Sign Up

Have an account? Sign In Now

Sign In

Forgot Password?

Don't have account, Sign Up Here

Forgot Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

Have an account? Sign In Now

Sorry, you do not have a permission to ask a question, You must login to ask question.

Forgot Password?

Need An Account, Sign Up Here
Sign InSign Up

ErrorCorner

ErrorCorner Logo ErrorCorner Logo

ErrorCorner Navigation

  • Home
  • Contact Us
  • About Us
Search
Ask A Question

Mobile menu

Close
Ask a Question
  • Home
  • Contact Us
  • About Us
Home/ Questions/Q 543
Next
Answered
Kenil Vasani
Kenil Vasani

Kenil Vasani

  • 646 Questions
  • 567 Answers
  • 77 Best Answers
  • 26 Points
View Profile
  • 9
Kenil Vasani
Asked: December 14, 20202020-12-14T21:04:21+00:00 2020-12-14T21:04:21+00:00In: Python

How To Solve KeyError: u“None of [Index([..], dtype=’object’)] are in the [columns]”

  • 9

I’m trying to create a SVM model from what I found in github here, but it keeps returning this error.

Traceback (most recent call last):
  File "C:\Users\Me\Documents\#e\projects\Sign-Language-Glove-master\modeling.py", line 22, in <module>
    train_features = train[['F1','F2','F3','F4','F5','X','Y','Z','C1','C2']]
  File "C:\Python27\lib\site-packages\pandas\core\frame.py", line 2934, in __getitem__
    raise_missing=True)
  File "C:\Python27\lib\site-packages\pandas\core\indexing.py", line 1354, in _convert_to_indexer
    return self._get_listlike_indexer(obj, axis, **kwargs)[1]
  File "C:\Python27\lib\site-packages\pandas\core\indexing.py", line 1161, in _get_listlike_indexer
    raise_missing=raise_missing)
  File "C:\Python27\lib\site-packages\pandas\core\indexing.py", line 1246, in _validate_read_indexer
    key=key, axis=self.obj._get_axis_name(axis)))
KeyError: u"None of [Index([u'F1', u'F2', u'F3', u'F4', u'F5', u'X', u'Y', u'Z', u'C1', u'C2'], dtype='object')] are in the [columns]"

This is my code.

import pandas as pd
dataframe= pd.read_csv("lettera.csv", delimiter=',')
df=pd.DataFrame(dataframe)

from sklearn.model_selection import train_test_split
train, test = train_test_split(df, test_size = 0.2)

train_features = train[['F1','F2','F3','F4','F5','X','Y','Z','C1','C2']]

And these are the contents of the csv file.

LABEL, F1, F2, F3, F4, F5, X, Y, Z, C1, C2

1, 631, 761, 739, 751, 743, 14120, -5320, 7404, 0, 0

1, 632, 759, 740, 751, 744, 14108, -5276, 7444, 0, 0

1, 630, 761, 740, 752, 743, 14228, -5104, 7680, 0, 0

1, 630, 761, 738, 750, 743, 14256, -5148, 7672, 0, 0

1, 632, 759, 740, 751, 744, 14172, -5256, 7376, 0, 0

1, 632, 759, 742, 751, 746, 14288, -5512, 7412, 0, 0

1, 632, 759, 742, 751, 744, 14188, -5200, 7416, 0, 0

1, 634, 759, 738, 751, 743, 14252, -5096, 7524, 0, 0

1, 630, 759, 739, 751, 743, 14364, -5124, 7612, 0, 0

1, 630, 759, 740, 751, 744, 14192, -5316, 7424, 0, 0

1, 631, 760, 739, 752, 743, 14292, -5100, 7404, 0, 0

1, 634, 759, 738, 751, 742, 14232, -5188, 7468, 0, 0

1, 632, 759, 740, 751, 744, 14288, -5416, 7552, 0, 0

1, 630, 760, 739, 752, 743, 14344, -5072, 7816, 0, 0

1, 631, 760, 739, 752, 743, 14320, -4992, 7444, 0, 0

1, 630, 762, 739, 751, 746, 14220, -5172, 7544, 0, 0

1, 630, 759, 739, 751, 742, 14280, -5176, 7416, 0, 0

1, 630, 760, 738, 752, 740, 14360, -5028, 7468, 0, 0

1, 632, 759, 738, 752, 741, 14384, -5108, 7364, 0, 0

1, 629, 757, 737, 751, 741, 14224, -5108, 7536, 0, 0

1, 629, 758, 740, 751, 744, 14412, -5136, 7956, 0, 0

1, 629, 761, 740, 750, 744, 14468, -4868, 7100, 0, 0

1, 629, 760, 738, 752, 741, 14504, -4964, 6600, 0, 0

1, 629, 758, 738, 749, 741, 14440, -5112, 6828, 0, 0

1, 629, 760, 738, 752, 741, 14484, -5016, 7556, 0, 0

Thank you.

dataframepandaspython
  • 1 1 Answer
  • 10 Views
  • 0 Followers
  • 0
Answer
Share
  • Facebook

    1 Answer

    • Voted
    1. Kenil Vasani

      Kenil Vasani

      • 646 Questions
      • 567 Answers
      • 77 Best Answers
      • 26 Points
      View Profile
      Best Answer
      Kenil Vasani
      2020-12-14T21:02:23+00:00Added an answer on December 14, 2020 at 9:02 pm

      The problem is that there are spaces in your column names; here is what I get when I save your data and load the dataframe as you have done:

      df.columns
      # result:
      Index(['LABEL', ' F1', ' F2', ' F3', ' F4', ' F5', ' X', ' Y', ' Z', ' C1',
             ' C2'],
            dtype='object')
      

      so, putting back these spaces in the column names eliminates the error:

      train_features = train[[' F1',' F2',' F3',' F4',' F5',' X',' Y',' Z',' C1',' C2']] # works OK
      

      But arguably, having spaces in your column names is not good practice (you saw what can happen!); so it is better to eliminate them during loading. Here is the end to end code to do that (eliminating also the unnecessary second dataframe):

      import pandas as pd
      df= pd.read_csv("lettera.csv", delimiter=',', header=None, skiprows=1, names=['LABEL','F1','F2','F3','F4','F5','X','Y','Z','C1','C2'])
      
      from sklearn.model_selection import train_test_split
      train, test = train_test_split(df, test_size = 0.2)
      train_features = train[['F1','F2','F3','F4','F5','X','Y','Z','C1','C2']] # works OK
      
      • 5
      • Share
        Share
        • Share on Facebook
        • Share on Twitter
        • Share on LinkedIn
        • Share on WhatsApp

    You must login to add an answer.

    Forgot Password?

    Sidebar

    Ask A Question
    • Popular
    • Kenil Vasani

      SyntaxError: invalid syntax to repo init in the AOSP code

      • 5 Answers
    • Kenil Vasani

      Homebrew fails on MacOS Big Sur

      • 3 Answers
    • Kenil Vasani

      runtimeError: package fails to pass a sanity check for numpy ...

      • 3 Answers
    • Kenil Vasani

      xlrd.biffh.XLRDError: Excel xlsx file; not supported

      • 3 Answers
    • Kenil Vasani

      Error: Node Sass version 5.0.0 is incompatible with ^4.0.0

      • 2 Answers

    Explore

    • Most Answered
    • Most Visited
    • Most Voted
    • Random

    © 2020-2021 ErrorCorner. All Rights Reserved
    by ErrorCorner.com